建設(shè)工程教育網(wǎng) > 建筑文苑 > 市政工程 > 正文
2006-07-25 10:07 【大 中 小】【打印】【我要糾錯】
摘要:傳統(tǒng)污水處理工藝以能消能,消耗大量有機碳源,剩余污泥產(chǎn)量大,同時釋放較多CO2(因耗能)到大氣之中。當(dāng)今,全球普遍強調(diào)的可持續(xù)發(fā)展經(jīng)濟模式在污水處理領(lǐng)域也得到體現(xiàn)。因此,研發(fā)以節(jié)省能(資)源消耗、并最大程度回收(用)有用能(資)源的可持續(xù)污水處理工藝已勢在必行,在詳細介紹兩種新近在歐洲出現(xiàn)的可持續(xù)處理工藝——反硝化除磷、厭氧氨(氮)氧化的基礎(chǔ)上,提出一個以轉(zhuǎn)換有機能源(甲烷)、回收磷酸鹽(鳥糞石)、回用處理水(非飲用目的)為目標(biāo)的可持續(xù)城市污水生物除磷脫氮推薦工藝。
關(guān)鍵詞:歐洲 污水處理技術(shù) 除磷 脫氮
4、可持續(xù)生物除磷脫氮推薦工藝
4.1 推薦工藝
以BCFS工藝為代表的反硝化除磷, 及CANON 工藝為代表的厭氧氨氧化作為可持續(xù)除磷脫氮關(guān)鍵技術(shù)的藍本,荷蘭-中國大學(xué)間合作研究提出了一針對城市污水處理的可持續(xù)除磷脫氮推薦工藝,如圖7 所示。這個推薦工藝突出COD 甲烷化、磷酸鹽回收以及處理水回用等與可持續(xù)性密切相關(guān)的內(nèi)容。
為了有效轉(zhuǎn)換污水中過剩COD 為甲烷,早年德國人開發(fā)的AB 法[42 ]中A 段被推薦用于濃縮COD.A 段采用很短的污泥齡(8~25 h) ;以這種方式,細菌快速繁殖,約70 %~80 %的懸浮狀和溶解狀的進水COD 能被合成為細菌細胞。在A 段后生物污泥被沉淀分離,然后被送往污泥消化池進行消化、轉(zhuǎn)化。與來自二沉池的生物污泥相比較,由A 段產(chǎn)生的污泥有著較好的可消化性,最終會導(dǎo)致較低的消化剩余污泥(熟污泥) .A 段濃縮COD 的同時,也必然將相當(dāng)數(shù)量的氮、磷合成于細菌細胞之中。
經(jīng)A 段處理之后水/ 物流被分成兩股: ①泥水分離后的上清液; ②通往消化池的污泥。上清液中所剩COD 被剛好用來脫除剩余的氮和磷。顯然,對這股水/ 物流采用BCFS工藝脫除氮、磷能最小化COD 的消耗量;從BCFS工藝中產(chǎn)生的高磷含量污泥也被送往消化池消化。消化后產(chǎn)生的消化液一般氮、磷濃度很高,且水溫較高(應(yīng)至少為30 ℃) .一些以回收磷酸鹽為目的的現(xiàn)場試驗表明[43~45 ] ,污泥消化液是污水處理場中最理想的磷源回收之處。因此,污泥消化液首先被引入一沉淀單元內(nèi),通過投加鎂化合物(如氯化鎂等) 形成磷酸銨鎂化合物(MAP ,即鳥糞石) 而分離出磷。鳥糞石能被用作植物生長所需之磷源。磷被回收后的消化液采用CANON 工藝脫除濃度仍然很高的氨氮最為合適,因為消化液幾乎不含COD ,加之較高水溫對獲得較完全的厭氧氨氧化率十分有利。
雖然經(jīng)CANON 工藝處理后的出水氨氮濃度一般并不能直接達到排放標(biāo)準(zhǔn),但此股水流流量很小,同來自于BCFS工藝的出水(大流量、低濃度) 混合后能被稀釋到排放標(biāo)準(zhǔn)以下?紤]回用時,COD ,N ,P 已分別達標(biāo)(排放標(biāo)準(zhǔn)) 的出水只需經(jīng)簡單的后處理便可實現(xiàn)回用于非飲用目的。
4.2 效率分析
為了定量說明圖7 所示推薦工藝所能完成的處理效率,此處以荷蘭一正在建設(shè)中的城市污水處理廠所接收的水質(zhì)、水量為例進行處理效率分析。該處理廠所接收的平均污水量為8 500 m3/ d ;平均水質(zhì)如下: COD = 625 mg/ L , TKN = 60 mg/ L , TP =9.5 mg/ L .
根據(jù)經(jīng)驗數(shù)據(jù),約有40 %的進水總氮在A 段中能被合成到細菌細胞中。如果以離心機來分離消化液,高達1 200 mg/ L 的氨氮會出現(xiàn)在消化液中[46 ] .假設(shè)來自A 段普通生物污泥含氮、磷量分別為8 %和2 %(來自于BCFS工藝生物污泥磷含量可高達12 %) ;進入消化池的污泥COD 有一半可轉(zhuǎn)化為甲烷(這些假設(shè)數(shù)據(jù)均為實際經(jīng)驗值) .理論上,這意味著高達300 mg/ L 的磷可能存在于消化液中?梢姡瑥南褐谢厥樟姿猁}是十分必要的。
以上述經(jīng)驗數(shù)據(jù)及15 ℃水溫為依據(jù),可借助于數(shù)學(xué)模擬以及各處理單元可達到的實際處理效果建立有關(guān)COD ,N ,P 的物料平衡,計算結(jié)果詳見圖8 .按40 %進水氨氮在A 段內(nèi)被合成到細菌體內(nèi)計算,則相應(yīng)有74 %的進水COD(其中約1/ 3 被氧化供合成能量之用) 和60 %的進水總磷在A 段內(nèi)被轉(zhuǎn)化。剩余26 %的COD 被引入BCFS工藝,以去除剩余60 %的氮(至出水到8 mg/ L) 和37 %的磷(至出水到0.5 mg/ L) .BCFS工藝以20 d 污泥齡運行,產(chǎn)生的剩余污泥量很少(僅為進水總COD 的6.6 %) .
因約50 %污泥形式的COD 在消化階段被轉(zhuǎn)化為甲烷,所以,相應(yīng)會有一半的氮、磷由于細胞的分解而釋放到環(huán)境中(消化液) ;另一半COD ,N , P 則以熟污泥形式存在。如果使用氯化鎂作為沉淀劑,消化液中97 %的磷能以鳥糞石形式沉淀[44 ] ,這相當(dāng)于有46.2 %的進水磷可被回收。
CANON 工藝被作為最后一個處理單元,處理磷回收后氨氮含量仍然很高的消化液。對CANON工藝的數(shù)學(xué)模擬表明,在30 ℃,如果工藝參數(shù)控制得當(dāng), 可以達到90 % 的總氮去除率[40 ] .盡管CANON工藝并不能將消化液中的氨氮去除殆盡,但此股水流流量較小,同來自于BCFS工藝很大出水流量混合后并不會使總的出水濃度升值太高。在此例中,出水總的COD ,N , P 的濃度分別為30 mg/ L(非生物降解性) 、9 mg/ L 和0.6 mg/ L .
4.3 可持續(xù)性
上述舉例分析中,COD 直接氧化(分解) 而生成CO2 的數(shù)量被減低到了最小程度。A 段中26 %的COD 的分解是為另外48 %的COD 合成提供能量,是生物污泥形成(COD 濃縮) 所必不可少的條件;A段后剩余26 %COD 剛好被用于反硝化除磷,而非簡單分解。因為僅60 %的進水總氮負荷需經(jīng)反硝化除磷脫除,所以,脫氮所必需的碳源(COD) 也相應(yīng)節(jié)省。這樣,被節(jié)省或過剩的COD(共48 %) 便能被用于甲烷化。再者,無論是COD 氧化、反硝化除磷、還是亞硝化都能節(jié)省很多耗氧量,因此,推薦工藝的可持續(xù)性顯而易見。推薦工藝與傳統(tǒng)工藝計算所得重要處理效率數(shù)據(jù)見表2 .
注:表中數(shù)據(jù)表示去除單位質(zhì)量的污染物,所消耗的或產(chǎn)生的物質(zhì)的量,如0.48 kgP/ kgP 表示去除1 kgP 可回收磷酸鹽(以P 計) 0.48kg.
與傳統(tǒng)工藝相比較,推薦工藝在表2所列的各個方面均具可觀的可持續(xù)性。
4.4 工藝評估
推薦工藝中雖涉及多個處理單元,但象AB 法、BCFS工藝、污泥消化、磷酸鹽回收等多已用于工程實際,并取得了良好的運行效果。在建筑結(jié)構(gòu)方面,新穎的BCFS工藝同心圓平面設(shè)計成為真正意義上的“UNITAN K”構(gòu)造。盡管CANON 工藝仍在研發(fā)之中,但試驗、現(xiàn)場觀察以及對其所做的數(shù)學(xué)模擬無疑會加速它在工程中的應(yīng)用。因此,推薦工藝并不存在任何技術(shù)方面的難題。
多個處理單元被合并于推薦工藝中無疑會導(dǎo)致基礎(chǔ)建設(shè)(工程建設(shè)與材料等) 費用增高。然而,推薦工藝之可持續(xù)性的貢獻必將降低運行管理費用(主要是電力消耗和污泥處置) .此外,磷酸鹽回收與處理水回用還能帶來潛在的經(jīng)濟價值,對緩解磷與水資源危機有現(xiàn)實意義;顯著減少的CO2 釋放量對控制溫室效應(yīng)也有著不可低估的積極作用。
參考文獻
1 van Loosdrecht M C M ,et al. Environmental impacts of nutrient removal processes :case study. Envir Engrg ,1997 ,123 :33~40.
2 Mulder A. Anaerobic ammonium oxidation. US patent documents427849 (507884) ,1992
3 Osborn D W,Nicholls H A. Optimization of the activated sludge process for the biological removal of phosphorus. Prog Water Technol ,10 (1/ 2) 261~177
4 Kuba T , et al. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitri2fication in a two2sludge system. Water Res 1996 , 30 ( 7) : 1702 ~1710
5 Mino T ,et al. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res ,1997 ,32 :3193~3207
6 Hao X D ,et al. Contrbution of P2Bacteria in BNR processes to overall effects on the environment . Water Sci and Technol ,2001 ,44 (1) :67~76
7 van Loosdrecht M C M ,Jetten M S M. Microbiological conversions in nitrogen removal ,Water Sci and Technol ,1998 ,38 :1~7
8 Srinalth E G,et al. Rapid removal of phosphorus from sewage by activated sludge. Experienta ,1959 ,15 :339~340
9 Rensink J H. Biologische defosfatering en procesbepalende factoren. In :NVA Symposium Proceedings. Nieuwe ontwikkelingen en praktilkervaringen in Nederland en Zewden (in Dutch) ,1981
10 van Loosdrecht M C M ,et al.Biological phosphorus removal processes. Microbiol Biotechnol ,1997 ,48 :289~296
11 van Loosdrecht M C M ,et al. Upgrading of wastewater treatmentprocesses for integrated nutrient removal2BCFS òprocess. Water SciTechnol ,1998 ,37 (9) :209~217
12 Brandse F ,van Loosdrecht M C M. Sewage treatment and methods for phosphate recovery in the BCFS ò process. Water Sci Technol
13 Smolders ,et al. Steady state analysis to evaluate the phosphate removal capacity and acetate requirement of biological phosphorus removing mainstream and sidestream process. Water Res , 1996 , 30 :2748~2760
14 Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol ,1975 ,17 :491~493
15 van de Graaf A A ,et al. Autotrophic growth of anaerobic ammonium-oxidizing bacteria in a fluidized bed reactor. Microbiol , 1996 ,142 :2187~2196
16 Strous M ,et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Mocrobiol Biotechnol ,1996 ,50 :589~596
17 Strous ,et al. Key physiology of anaerobic ammoniumoxidation. Environ Microbiol ,1999 ,65 :3248~3250
18 Turk O ,Mavinic D S. Stability of nitrite build up in an activated sludge system. J Water Pollut Contr Fed ,1989 ,61 :1440~1448
19 Rahmani H ,et al. Nitrite removal by a fixed culture in a submerged granular biofiltre. Water Res ,1995 ,29 :1745~1753
20 Brouwer , et al. Behandelling van sticstofrijke retorstromen op rioolawaterzuiveringsinstallaties , enkelvooudig reactorsystem voor deverwijdering via nitrient . STOWA rapor 96 - 01 ,STOWA Utrecht ,the Netherlands(in Dutch) ,1996
21 Hellinga ,et al. The SHARON process :an innovative method for nitrogen removal form ammonium2rich wastewater. Water Sci Technol ,1998 ,37 (4/ 5) :183~187
22 Hellinga ,et al. Model2based design of a novel process for ammonium removal from concentrated flows. Mathematical and Computer Modeling of Dynamical Systems ,1999 ,5940 :251~271
23 Hunik J H. Engineering aspects of nitrification with immobilized cell. PhD thesis ,Wageningen Agricultural University , the Netherlands ,1995
24 Garrido J ,et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng ,1997 ,53 :168~178
25 Bernet N. Nitrification at low oxygen concentration in biofilm reactor. Envir Engrg ,2001 ,127 (3) :266~271
26 Siegrist H ,Gujer W. Demonstration of mass transfer and pH effects in a nitrifying biofilm. Water Res ,1987 ,21 :241~248
27 Jayamohan S ,et al. Effect of DO on kinetics of nitrification. Water Supply(Sweden) ,1988 ,6 :141~150
28 Stevens D K. Dynamic model of nitrification in a fluidized bed. Envir Engrg ,1989 ,115 (5) :910~929
29 Laanbreok H J ,Gerards S. Competition for limiting amounts of oxygen between Nit rosomonas europaea and Nit robacter wi nogradsky grow in mixed continuous cultures. Archives of Microbiology ,1993 ,159 :453~459
30 Sheintuch M ,et al. Substrate inhibition and multiple states in a continuous nitrification process. Water Res ,1995 ,29 (3) :1811~1818
31 Wanner O , Gujer W. A multispecies biofilm model. Biotechnol Bioeng ,1986 ,28 :314~328
32 Denac M ,et al. Modeling of experiments on biofilm penetration effects in a fluidized bed nitrfication reactor. Biotechnol Bioeng ,1983 ,25 :1841~1861
33 van Loosdrecht M C M , Jetten M S M. Method for treating ammonia-comprising wastewater. PCT/ NL97/ 00482 ,1997
34 Jeeten M S M ,et al. Towards a more sustainable municipal wastewater treatment system. Water Sci Technol ,1997 ,35 :178~180
35 van Dongen U , et al. The SHARON òOANAMMOX process for treatment ammonium rich2wastewater. Water Sci. Technol ,2001 ,44(1) :153~160
36 Strous M , et al. Effects of aerobic and micro2aerobic conditions on anaerobic ammonium2oxidizing (Anammox) . Envir Microbiol ,1997 ,63 (4) :2446~2448
37 Siegrist H ,et al. (1998) . Nitrogen removal loss in a nitrifying rotating contactor treating ammonium2rich wastewater without organic carbon. Water Sci Technol. ,38 (8/ 9) ,241 - 248
38 Helmer C ,et al. Nitrogen loss in a nitrifying bilfilm system. Water Sci Technol ,1999 ,39 (7) :13~21
39 Strous M. Anammox and nitrification. In :Microbilogy of Anaerobic Ammonium Oxidation ( PhD thesis) ,68~81 , ISBN90 - 9013621 -5 ,the Netherlands ,2000
40 Hao X D ,et al. Sensitivity anslysis of a biofilm model describing a onstage completely autotrophic nitrogen removal (CANON) process. accepted for publication in Biotechno and Bioengng ,2002 ,77 (3) :266~277
41 Hao X D , et al. Model2based evaluation of the behavior of theCANON process with variable temperature and inflow. Water Res(in press)
42 Boehnke B. Moeglichkeiten Abwasser reinigung durch das‘Adsorption2Belebungs2verfahren’。 GWA29 , Schrifureihe des Instituts fuer Siedlungswsserwirtschaft der RWTH Aachen , Germany ( in German) ,1978
43 Momberg G A ,Ollermann R A. The removal of phosphate by hydroxyapatitie and struvite crystallisation in South Africa. Water Sci &Technol ,1992 ,26 ,987~996
44 Jaffer Y,et al. Assesing the potential of full scale phosphorus recovery by struvite fornmation. Water Sci Technol (in press)
45 Battistoni P ,et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization. Water Res , 2001 , 35 ( 9) : 2167 ~2178
46 Mulder J W, et al. Full scale application of the Sharon process for treatment of reject water of digested sludge dewatering. Water Sci & Technol ,2001 ,43 (11) :127~134 (續(xù)完)
1、凡本網(wǎng)注明“來源:建設(shè)工程教育網(wǎng)”的所有作品,版權(quán)均屬建設(shè)工程教育網(wǎng)所有,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)貼或以其他方式使用;已經(jīng)本網(wǎng)授權(quán)的,應(yīng)在授權(quán)范圍內(nèi)使用,且必須注明“來源:建設(shè)工程教育網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其法律責(zé)任。
2、本網(wǎng)部分資料為網(wǎng)上搜集轉(zhuǎn)載,均盡力標(biāo)明作者和出處。對于本網(wǎng)刊載作品涉及版權(quán)等問題的,請作者與本網(wǎng)站聯(lián)系,本網(wǎng)站核實確認后會盡快予以處理。
本網(wǎng)轉(zhuǎn)載之作品,并不意味著認同該作品的觀點或真實性。如其他媒體、網(wǎng)站或個人轉(zhuǎn)載使用,請與著作權(quán)人聯(lián)系,并自負法律責(zé)任。
3、本網(wǎng)站歡迎積極投稿。